Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2112, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459071

RESUMO

Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.


Assuntos
Doenças Priônicas , Príons , Animais , Príons/metabolismo , Proteínas Priônicas/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Mamíferos/metabolismo , Dobramento de Proteína
2.
Acta Neuropathol Commun ; 11(1): 145, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679832

RESUMO

Among transmissible spongiform encephalopathies or prion diseases affecting humans, sporadic forms such as sporadic Creutzfeldt-Jakob disease are the vast majority. Unlike genetic or acquired forms of the disease, these idiopathic forms occur seemingly due to a random event of spontaneous misfolding of the cellular PrP (PrPC) into the pathogenic isoform (PrPSc). Currently, the molecular mechanisms that trigger and drive this event, which occurs in approximately one individual per million each year, remain completely unknown. Modelling this phenomenon in experimental settings is highly challenging due to its sporadic and rare occurrence. Previous attempts to model spontaneous prion misfolding in vitro have not been fully successful, as the spontaneous formation of prions is infrequent and stochastic, hindering the systematic study of the phenomenon. In this study, we present the first method that consistently induces spontaneous misfolding of recombinant PrP into bona fide prions within hours, providing unprecedented possibilities to investigate the mechanisms underlying sporadic prionopathies. By fine-tuning the Protein Misfolding Shaking Amplification method, which was initially developed to propagate recombinant prions, we have created a methodology that consistently produces spontaneously misfolded recombinant prions in 100% of the cases. Furthermore, this method gives rise to distinct strains and reveals the critical influence of charged surfaces in this process.


Assuntos
Síndrome de Creutzfeldt-Jakob , Príons , Humanos , Imageamento por Ressonância Magnética , Tremor
3.
J Neuropathol Exp Neurol ; 82(2): 169-179, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36458954

RESUMO

Fatal familial insomnia (FFI) is a rare prionopathy with unusually high incidence in the Basque Country. We report detailed data on clinical, diagnostic, histopathological, and biochemical characteristics of a recent FFI case series. The Basque Brain Bank database was screened for patients diagnosed from 2010 to 2021 with standard genetic and/or neuropathological criteria. This series includes 16 patients, 25% without family history, with 12 cases from 9 unrelated (but geographically-linked, Basque country) kindreds, onset ranging from 36 to 70 years, and disease course from 7 to 11.5 months. Insomnia was the initial symptom in most cases, with consistent polysomnography in 92% of the cases. In contrast, 14-3-3 and RT-QuIC from cerebrospinal fluid were negative. Most patients were homozygous for methionine. Gliosis and neuronal loss in basal ganglia and thalamus were the main histopathological findings; Western blotting identified preferentially the protease-resistant prion protein (PrPres) type 2, although detection of the scrapie isoform of the prion protein (PrPSc) identified using brain tissue RT-QuIC was more successful. This is one of the largest current studies on FFI patients performed to provide improvements in diagnostic reliability. Among the analyzed tests, polysomnography and the genetic study show the highest diagnostic value in FFI.


Assuntos
Insônia Familiar Fatal , Príons , Humanos , Insônia Familiar Fatal/diagnóstico , Insônia Familiar Fatal/genética , Insônia Familiar Fatal/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Reprodutibilidade dos Testes , Príons/genética , Encéfalo/patologia
4.
Acta Neuropathol Commun ; 10(1): 179, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514160

RESUMO

Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature and its sporadic incidence worldwide is reminiscent of the incidence of idiopathic spontaneous prion diseases in humans, which account for more than 85% of the cases in humans. Hence, developing animal models that consistently reproduce this phenomenon of spontaneous PrP misfolding, is of importance to study the pathobiology of idiopathic spontaneous prion disorders. Transgenic mice overexpressing sheep PrPC with I112 polymorphism (TgShI112, 1-2 × PrP levels compared to sheep brain) manifest clinical signs of a spongiform encephalopathy spontaneously as early as 380 days of age. The brains of these animals show the neuropathological hallmarks of prion disease and biochemical analyses of the misfolded prion protein show a ladder-like PrPres pattern with a predominant 7-10 kDa band. Brain homogenates from spontaneously diseased transgenic mice were inoculated in several models to assess their transmissibility and characterize the prion strain generated: TgShI112 (ovine I112 ARQ PrPC), Tg338 (ovine VRQ PrPC), Tg501 (ovine ARQ PrPC), Tg340 (human M129 PrPC), Tg361 (human V129 PrPC), TgVole (bank vole I109 PrPC), bank vole (I109I PrPC), and sheep (AHQ/ARR and AHQ/AHQ churra-tensina breeds). Our analysis of the results of these bioassays concludes that the strain generated in this model is indistinguishable to that causing atypical scrapie (Nor98). Thus, we present the first faithful model for a bona fide, transmissible, ovine, atypical scrapie prion disease.


Assuntos
Doenças Priônicas , Príons , Scrapie , Camundongos , Animais , Ovinos , Humanos , Scrapie/metabolismo , Roedores/metabolismo , Príons/metabolismo , Camundongos Transgênicos , Arvicolinae/metabolismo
5.
PLoS Pathog ; 18(10): e1010900, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36206325

RESUMO

The role of the glycosylation status of PrPC in the conversion to its pathological counterpart and on cross-species transmission of prion strains has been widely discussed. Here, we assessed the effect on strain characteristics of bovine spongiform encephalopathy (BSE) isolates with different transmission histories upon propagation on a model expressing a non-glycosylated human PrPC. Bovine, ovine and porcine-passaged BSE, and variant Creutzfeldt-Jakob disease (vCJD) isolates were used as seeds/inocula in both in vitro and in vivo propagation assays using the non-glycosylated human PrPC-expressing mouse model (TgNN6h). After protein misfolding cyclic amplification (PMCA), all isolates maintained the biochemical characteristics of BSE. On bioassay, all PMCA-propagated BSE prions were readily transmitted to TgNN6h mice, in agreement with our previous in vitro results. TgNN6h mice reproduced the characteristic neuropathological and biochemical hallmarks of BSE, suggesting that the absence of glycans did not alter the pathobiological features of BSE prions. Moreover, back-passage of TgNN6h-adapted BSE prions to BoTg110 mice recovered the full BSE phenotype, confirming that the glycosylation of human PrPC is not essential for the preservation of the human transmission barrier for BSE prions or for the maintenance of BSE strain properties.


Assuntos
Síndrome de Creutzfeldt-Jakob , Encefalopatia Espongiforme Bovina , Príons , Animais , Ovinos , Bovinos , Camundongos , Humanos , Suínos , Encefalopatia Espongiforme Bovina/patologia , Camundongos Transgênicos , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/patologia , Príons/metabolismo , Polissacarídeos/metabolismo , Carneiro Doméstico/metabolismo
6.
J Neurol ; 269(8): 4253-4263, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35294616

RESUMO

Gerstmann-Sträussler-Scheinker disease (GSS) is a rare neurodegenerative illness that belongs to the group of hereditary or familial Transmissible Spongiform Encephalopathies (TSE). Due to the presence of different pathogenic alterations in the prion protein (PrP) coding gene, it shows an enhanced proneness to misfolding into its pathogenic isoform, leading to prion formation and propagation. This aberrantly folded protein is able to induce its conformation to the native counterparts forming amyloid fibrils and plaques partially resistant to protease degradation and showing neurotoxic properties. PrP with A117V pathogenic variant is the second most common genetic alteration leading to GSS and despite common phenotypic and neuropathological traits can be defined for each specific variant, strikingly heterogeneous manifestations have been reported for inter-familial cases bearing the same pathogenic variant or even within the same family. Given the scarcity of cases and their clinical, neuropathological, and biochemical variability, it is important to characterize thoroughly each reported case to establish potential correlations between clinical, neuropathological and biochemical hallmarks that could help to define disease subtypes. With that purpose in mind, this manuscript aims to provide a detailed report of the first Spanish GSS case associated with A117V variant including clinical, genetic, neuropathological and biochemical data, which could help define in the future potential disease subtypes and thus, explain the high heterogeneity observed in patients suffering from these maladies.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Príons , Amiloide/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Mutação , Placa Amiloide , Príons/genética , Príons/metabolismo
7.
Alzheimers Res Ther ; 13(1): 176, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663460

RESUMO

BACKGROUND: More than 40 pathogenic heterozygous PRNP mutations causing inherited prion diseases have been identified to date. Recessive inherited prion disease has not been described to date. METHODS: We describe the clinical and neuropathological data of inherited early-onset prion disease caused by the rare PRNP homozygous mutation R136S. In vitro PrPSc propagation studies were performed using recombinant-adapted protein misfolding cyclic amplification technique. Brain material from two R136S homozygous patients was intracranially inoculated in TgMet129 and TgVal129 transgenic mice to assess the transmissibility of this rare inherited form of prion disease. RESULTS: The index case presented symptoms of early-onset dementia beginning at the age of 49 and died at the age of 53. Neuropathological evaluation of the proband revealed abundant multicentric PrP plaques and Western blotting revealed a ~ 8 kDa protease-resistant, unglycosylated PrPSc fragment, consistent with a Gerstmann-Sträussler-Scheinker phenotype. Her youngest sibling suffered from progressive cognitive decline, motor impairment, and myoclonus with onset in her late 30s and died at the age of 48. Genetic analysis revealed the presence of the R136S mutation in homozygosis in the two affected subjects linked to homozygous methionine at codon 129. One sibling carrying the heterozygous R136S mutation, linked to homozygous methionine at codon 129, is still asymptomatic at the age of 74. The inoculation of human brain homogenates from our index case and an independent case from a Portuguese family with the same mutation in transgenic mice expressing human PrP and in vitro propagation of PrPSc studies failed to show disease transmissibility. CONCLUSION: In conclusion, biallelic R136S substitution is a rare variant that produces inherited early-onset human prion disease with a Gerstmann-Sträussler-Scheinker neuropathological and molecular signature. Even if the R136S variant is predicted to be "probably damaging", heterozygous carriers are protected, at least from an early onset providing evidence for a potentially recessive pattern of inheritance in human prion diseases.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Doenças Priônicas , Príons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Doença de Gerstmann-Straussler-Scheinker/genética , Humanos , Camundongos , Mutação/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Príons/metabolismo , Proteínas Recombinantes
8.
J Pers Med ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071291

RESUMO

Congenital erythropoietic porphyria (CEP), also known as Günther's disease, results from a deficient activity in the fourth enzyme, uroporphyrinogen III synthase (UROIIIS), of the heme pathway. Ciclopirox (CPX) is an off-label drug, topically prescribed as an antifungal. It has been recently shown that it also acts as a pharmacological chaperone in CEP, presenting a specific activity in deleterious mutations in UROIIIS. Despite CPX is active at subtoxic concentrations, acute gastrointestinal (GI) toxicity was found due to the precipitation in the stomach of the active compound and subsequent accumulation in the intestine. To increase its systemic availability, we carried out pharmacokinetic (PK) and pharmacodynamic (PD) studies using alternative formulations for CPX. Such strategy effectively suppressed GI toxicity in WT mice and in a mouse model of the CEP disease (UROIIISP248Q/P248Q). In terms of activity, phosphorylation of CPX yielded good results in CEP cellular models but showed limited activity when administered to the CEP mouse model. These results highlight the need of a proper formulation for pharmacological chaperones used in the treatment of rare diseases.

9.
Sci Rep ; 11(1): 7702, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833330

RESUMO

Efforts to contain the spread of chronic wasting disease (CWD), a fatal, contagious prion disease of cervids, would be aided by the availability of additional diagnostic tools. RT-QuIC assays allow ultrasensitive detection of prion seeds in a wide variety of cervid tissues, fluids and excreta. The best documented antemortem diagnostic test involving RT-QuIC analysis targets lymphoid tissue in rectal biopsies. Here we have tested a more easily accessed specimen, ear pinna punches, using an improved RT-QuIC assay involving iron oxide magnetic extraction to detect CWD infections in asymptomatic mule and white-tailed deer. Comparison of multiple parts of the ear pinna indicated that a central punch spanning the auricular nerve provided the most consistent detection of CWD infection. When compared to results obtained from gold-standard retropharyngeal lymph node specimens, our RT-QuIC analyses of ear samples provided apparent diagnostic sensitivity (81%) and specificity (91%) that rivaled, or improved upon, those observed in previous analyses of rectal biopsies using RT-QuIC. These results provide evidence that RT-QuIC analysis of ear pinna punches may be a useful approach to detecting CWD infections in cervids.


Assuntos
Orelha Externa/patologia , Doença de Emaciação Crônica/diagnóstico , Animais , Cervos , Ensaio de Imunoadsorção Enzimática , Príons/isolamento & purificação , Especificidade da Espécie , Doença de Emaciação Crônica/patologia
10.
Front Bioeng Biotechnol ; 8: 589182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195153

RESUMO

Transmissible spongiform encephalopathies (TSEs) are a group of invariably fatal neurodegenerative disorders. The causal agent is an aberrantly folded isoform (PrPSc or prion) of the endogenous prion protein (PrPC) which is neurotoxic and amyloidogenic and induces misfolding of its physiological counterpart. The intrinsic physical characteristics of these infectious proteinaceous pathogens makes them highly resistant to the vast majority of physicochemical decontamination procedures used typically for standard disinfection. This means prions are highly persistent in contaminated tissues, the environment (surfaces) and, of great concern, on medical and surgical instruments. Traditionally, decontamination procedures for prions are tested on natural isolates coming from the brain of infected individuals with an associated high heterogeneity resulting in highly variable results. Using our novel ability to produce highly infectious recombinant prions in vitro we adapted the system to enable recovery of infectious prions from contaminated materials. This method is easy to perform and, importantly, results in highly reproducible propagation in vitro. It exploits the adherence of infectious prion protein to beads of different materials allowing accurate and repeatable assessment of the efficacy of disinfectants of differing physicochemical natures to eliminate infectious prions. This method is technically easy, requires only a small shaker and a standard biochemical technique and could be performed in any laboratory.

11.
Biomolecules ; 10(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204429

RESUMO

Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.


Assuntos
Proteínas PrPSc/metabolismo , Doenças Priônicas/diagnóstico , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Humanos , Proteínas PrPSc/química , Doenças Priônicas/metabolismo
12.
FASEB J ; 34(3): 3969-3982, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944411

RESUMO

Unlike other species, prion disease has never been described in dogs even though they were similarly exposed to the bovine spongiform encephalopathy (BSE) agent. This resistance prompted a thorough analysis of the canine PRNP gene and the presence of a negatively charged amino acid residue in position 163 was readily identified as potentially fundamental as it differed from all known susceptible species. In the present study, the first transgenic mouse model expressing dog prion protein (PrP) was generated and challenged intracerebrally with a panel of prion isolates, none of which could infect them. The brains of these mice were subjected to in vitro prion amplification and failed to find even minimal amounts of misfolded prions providing definitive experimental evidence that dogs are resistant to prion disease. Subsequently, a second transgenic model was generated in which aspartic acid in position 163 was substituted for asparagine (the most common in prion susceptible species) resulting in susceptibility to BSE-derived isolates. These findings strongly support the hypothesis that the amino acid residue at position 163 of canine cellular prion protein (PrPC ) is a major determinant of the exceptional resistance of the canidae family to prion infection and establish this as a promising therapeutic target for prion diseases.


Assuntos
Ácido Aspártico/química , Ácido Glutâmico/química , Príons/química , Príons/patogenicidade , Animais , Bioensaio , Encéfalo/patologia , Cães , Camundongos , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
13.
PLoS Pathog ; 15(10): e1008117, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31644574

RESUMO

The resolution of the three-dimensional structure of infectious prions at the atomic level is pivotal to understand the pathobiology of Transmissible Spongiform Encephalopathies (TSE), but has been long hindered due to certain particularities of these proteinaceous pathogens. Difficulties related to their purification from brain homogenates of disease-affected animals were resolved almost a decade ago by the development of in vitro recombinant prion propagation systems giving rise to highly infectious recombinant prions. However, lack of knowledge about the molecular mechanisms of the misfolding event and the complexity of systems such as the Protein Misfolding Cyclic Amplification (PMCA), have limited generating the large amounts of homogeneous recombinant prion preparations required for high-resolution techniques such as solid state Nuclear Magnetic Resonance (ssNMR) imaging. Herein, we present a novel recombinant prion propagation system based on PMCA that substitutes sonication with shaking thereby allowing the production of unprecedented amounts of multi-labeled, infectious recombinant prions. The use of specific cofactors, such as dextran sulfate, limit the structural heterogeneity of the in vitro propagated prions and makes possible, for the first time, the generation of infectious and likely homogeneous samples in sufficient quantities for studies with high-resolution structural techniques as demonstrated by the preliminary ssNMR spectrum presented here. Overall, we consider that this new method named Protein Misfolding Shaking Amplification (PMSA), opens new avenues to finally elucidate the three-dimensional structure of infectious prions.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Priônicas/metabolismo , Príons/metabolismo , Animais , Arvicolinae , Sistema Nervoso Central/patologia , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Camundongos Transgênicos , Doenças Priônicas/patologia , Estrutura Terciária de Proteína , Deficiências na Proteostase/patologia
14.
Mol Neurobiol ; 56(8): 5287-5303, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30592012

RESUMO

The large chronic wasting disease (CWD)-affected cervid population in the USA and Canada, and the risk of the disease being transmitted to humans through intermediate species, is a highly worrying issue that is still poorly understood. In this case, recombinant protein misfolding cyclic amplification was used to determine, in vitro, the relevance of each individual amino acid on cross-species prion transmission. Others and we have found that the ß2-α2 loop is a key modulator of transmission barriers between species and markedly influences infection by sheep scrapie, bovine spongiform encephalopathy (BSE), or elk CWD. Amino acids that differentiate ovine and deer normal host prion protein (PrPC) and associated with structural rigidity of the loop ß2-α2 (S173N, N177T) appear to confer resistance to some prion diseases. However, addition of methionine at codon 208 together with the previously described rigid loop substitutions seems to hide a key in this species barrier, as it makes sheep recombinant prion protein highly susceptible to CWD-induced misfolding. These studies indicate that interspecies prion transmission is not only governed just by the ß2-α2 loop amino acid sequence but also by its interactions with the α3-helix as shown by substitution I208M. Transmissible spongiform encephalopathies, characterized by long incubation periods and spongiform changes associated with neuronal loss in the brain, have been described in several mammalian species appearing either naturally (scrapie in sheep and goats, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids, Creutzfeldt-Jakob disease in humans) or by experimental transmission studies (scrapie in mice and hamsters). Much of the pathogenesis of the prion diseases has been determined in the last 40 years, such as the etiological agent or the fact that prions occur as different strains that show distinct biological and physicochemical properties. However, there are many unanswered questions regarding the strain phenomenon and interspecies transmissibility. To assess the risk of interspecies transmission between scrapie and chronic wasting disease, an in vitro prion propagation method has been used. This technique allows to predict the amino acids preventing the transmission between sheep and deer prion diseases.


Assuntos
Cervos/metabolismo , Proteínas Priônicas/metabolismo , Ovinos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Galinhas , Camundongos Knockout , Proteínas Priônicas/química , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
15.
Acta Neuropathol ; 135(2): 179-199, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29094186

RESUMO

Prion diseases are caused by a misfolding of the cellular prion protein (PrP) to a pathogenic isoform named PrPSc. Prions exist as strains, which are characterized by specific pathological and biochemical properties likely encoded in the three-dimensional structure of PrPSc. However, whether cofactors determine these different PrPSc conformations and how this relates to their specific biological properties is largely unknown. To understand how different cofactors modulate prion strain generation and selection, Protein Misfolding Cyclic Amplification was used to create a diversity of infectious recombinant prion strains by propagation in the presence of brain homogenate. Brain homogenate is known to contain these mentioned cofactors, whose identity is only partially known, and which facilitate conversion of PrPC to PrPSc. We thus obtained a mix of distinguishable infectious prion strains. Subsequently, we replaced brain homogenate, by different polyanionic cofactors that were able to drive the evolution of mixed prion populations toward specific strains. Thus, our results show that a variety of infectious recombinant prions can be generated in vitro and that their specific type of conformation, i.e., the strain, is dependent on the cofactors available during the propagation process. These observations have significant implications for understanding the pathogenesis of prion diseases and their ability to replicate in different tissues and hosts. Importantly, these considerations might apply to other neurodegenerative diseases for which different conformations of misfolded proteins have been described.


Assuntos
Encéfalo/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Animais , Arvicolinae , Encéfalo/patologia , Escherichia coli , Camundongos Transgênicos , Polimorfismo Genético , Proteínas Priônicas/genética , Dobramento de Proteína , Proteínas Recombinantes/metabolismo
16.
Pathogens ; 6(4)2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29240682

RESUMO

The misfolding of the cellular prion protein (PrPC) into the disease-associated isoform (PrPSc) and its accumulation as amyloid fibrils in the central nervous system is one of the central events in transmissible spongiform encephalopathies (TSEs). Due to the proteinaceous nature of the causal agent the molecular mechanisms of misfolding, interspecies transmission, neurotoxicity and strain phenomenon remain mostly ill-defined or unknown. Significant advances were made using in vivo and in cellula models, but the limitations of these, primarily due to their inherent complexity and the small amounts of PrPSc that can be obtained, gave rise to the necessity of new model systems. The production of recombinant PrP using E. coli and subsequent induction of misfolding to the aberrant isoform using different techniques paved the way for the development of cell-free systems that complement the previous models. The generation of the first infectious recombinant prion proteins with identical properties of brain-derived PrPSc increased the value of cell-free systems for research on TSEs. The versatility and ease of implementation of these models have made them invaluable for the study of the molecular mechanisms of prion formation and propagation, and have enabled improvements in diagnosis, high-throughput screening of putative anti-prion compounds and the design of novel therapeutic strategies. Here, we provide an overview of the resultant advances in the prion field due to the development of recombinant PrP and its use in cell-free systems.

17.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978705

RESUMO

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP.IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.


Assuntos
Aminoácidos/química , Proteínas Priônicas/química , Dobramento de Proteína , Substituição de Aminoácidos , Aminoácidos/isolamento & purificação , Animais , Bovinos , Suscetibilidade a Doenças , Camundongos , Mutação , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Sci Rep ; 7(1): 9584, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851967

RESUMO

Human transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders that include Kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia. GSS is a genetically determined TSE caused by a range of mutations within the prion protein (PrP) gene. Several animal models, based on the expression of PrPs carrying mutations analogous to human heritable prion diseases, support that mutations might predispose PrP to spontaneously misfold. An adapted Protein Misfolding Cyclic Amplification methodology based on the use of human recombinant PrP (recPMCA) generated different self-propagating misfolded proteins spontaneously. These were characterized biochemically and structurally, and the one partially sharing some of the GSS PrPSc molecular features was inoculated into different animal models showing high infectivity. This constitutes an infectious recombinant prion which could be an invaluable model for understanding GSS. Moreover, this study proves the possibility to generate recombinant versions of other human prion diseases that could provide a further understanding on the molecular features of these devastating disorders.


Assuntos
Doença de Gerstmann-Straussler-Scheinker/etiologia , Proteínas Priônicas/genética , Recombinação Genética , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Evolução Molecular , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , Conformação Proteica , Dobramento de Proteína , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...